
IERG4330/ ESTR4316/ IERG5730
Spring 2022

Stream Processing and Apache Storm

Prof. Wing C. Lau
Department of Information Engineering

wclau@ie.cuhk.edu.hk

Storm 2

Acknowledgements
n The slides used in this chapter are adapted from the following

sources:
n Nathan Marz, “Storm – Distributed and Fault-tolerant real-time

computation,” 2011, http://cloud.berkeley.edu/data/storm-berkeley.pdf
n Krishna Gade of Twitter, “storm - Stream Processing @twitter,” June

2013.
n Michael G. Noll of Verisign, “Apache Storm 0.9 basic training,” July, 2014,

http://www.slideshare.net/miguno/apache-storm-09-basic-training-
verisign

n Guido Schmutz of Trivadis, “Apache Storm vs. Spark Streaming – Two
Stream Processing Platforms compared,” DBTA Workshop on Stream
Processing, Berne, Dec 2014.

n Bobby Evans of Yahoo!, “From Gust to Tempest: Scaling Storm,” talk at
Hadoop Summit 2015.

n Sean T. Allen, Matthew Jankowski, Peter Pathirana ,Storm Applied,
Published by Manning, 2015.

n Rahul Jain, “Real time Analytics with Apache Kafka and Spark,” Big Data
Hyderabad Meetup, Oct 2014

n All copyrights belong to the original authors of the materials.

Storm 3

Example Use Case: Data Driven Personalization
http://visualize.yahoo.com/core/

http://visualize.yahoo.com/core

Storm 4

System Architecture for Data Driven Personalization
based on Offline, Asynchronous (e.g. Daily/Weekly)

Log Processing/ Data Analytics
/

Storm 5

@ Async Tier (before 2010)

Storm 6

Pros and Cons of
Async Processing via Hadoop

Strength
n Batch processing

n simple programming model
n Massively scalable

n 1000’s node cluster w/
commodity hardware

n High throughout
n Move computation to the

data nodes
n Highly available

n Built-in failover

Weakness
n High Latency

n Minutes or even hours
n Poor support for Interactive

Analysis
n Inability to Rapidly Respond to

Special/ Unexpected Events

Storm 7

If a company can react to data more
quickly, it can make more

Storm 8

Why Stream Processing ?

Storm 9

What is Stream Processing ?
n Infrastructure for continuous (non-stopped, never-ending) data

processing
n Computational model can be as general as MapReduce but

with the ability to produce results under low-latency constraint
n Input Data collected continuously is naturally processed

continuously
n Also known as Event Processing or Complex Event Processing

(CEP)

Storm 10

Architectural Pattern #1:
A Standalone Event Stream Processing System:

Kafka

Architectural Patterns
to support

BOTH Real-Time and Batched
Big Data Processing

Storm 12

The Two-Pronged Approach
n http://nathanmarz.com/blog/how-to-beat-the-cap-

theorem.html
n The interesting take-away: Fast Real-Time path

with Batch Backup reduces complexity and
improves performance

Source of Truth

Batch Batch Batch Batch Batch Batch

In
pu

t

Async

Real-time Streaming

Deltas

http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html

Storm 13

Architectural Pattern #2:
Event Stream Processing as part of the

Lambda Architecture (proposed by Nathan Marz)

http://lambda-architecture.net

Kafka –
a Unified, Scalable
Event Logging system
supporting the Message
Publishing/ Subscription
model

Storm 14

Summing Bird

n https://github.com/twitter/summingbird
Write the same code (script) and then compile to

be run on Storm as well as one Hadoop.

https://github.com/twitter/summingbird

Storm 15

Architectural Pattern #3:
Event Stream Processing as part of the

Kappa Architecture (from LinkedIn)

http://milinda.pathirage.org/kappa-architecture.com/

Kafka
a Unified, Scalable
Event Logging system
supporting the message
Publishing/ Subscription model

Stream Processing with
Apache Storm

Storm 17

Agenda
n Motivation for Stream Processing
n Apache Storm

n Stream-based Programming Models and Examples
n Different Flavors of Processing Guarantees
n Additional Computational Models with Storm

n Distributed Remote Procedure Call (DRPC)
n Transactional Processing with Trident (over Storm)

n Storm System Architecture
n Operational Guidelines for Storm
n Adoption Statistics and Real-time Use Cases
n Future Extensions (Researchie)

Storm 18

Traditional Workflow under the
Queues-Workers Model for Event Processing

Storm 19

A Simplified Example

Storm 20

A Simplified Example

Storm 21

A Simplified Example

Storm 22

A Simplified Example

Storm 23

The procedure to scale-up the system

Storm 24

Problems of Traditional Workflow model
n Scaling is Painful as it involves Queue-

partitioning and deployment of additional
Workers (processes/nodes)

n Operational overhead due to Worker failures
and Queue-Backups

n Coding is Tedious
n No guarantees on whether incoming Data is

being processed

Storm 25

A Solution: Apache Storm
n Focus on the support of Real-Time Streaming jobs
n To simplify dealing with queues (for tasks) and many workers (for load

balancing/parallelization)
n Higher level abstraction than message passing

n No intermediate message brokers!
n Support Guaranteed data processing (at least once) ; default: at most once
n Horizontal scalability ;
n Fault-tolerance
n Complementary to Hadoop:

n The “Hadoop” of real time streaming jobs
n The “Summingbird” system by Twitter can actually compile a single programming script into

a Storm and Hadoop version separately
n Built by Nathan Marz et al at Backtype, acquired and hardened by Twitter in 2011 ;

Open-sourced under Apache license since 2013
n Written in Clojure (a dialect of LISP): a Functional Programming Language which

generates bytecodes for JVM ;
n Let users (programmers) program in Java and Clojure

n At Twitter, Storm had been decommissioned as of summer 2015. Storm has been
replaced by Heron
n Heron uses the SAME programming abstraction and is 100% API-compatible with Storm
n Under Apache incubation (as of Feb 2019) https://github.com/apache/incubator-heron

Storm 26

Key Concepts in Storm
n Stream

n An Unbounded sequence of
Tuples

n Core Abstraction in Storm
n Defined with a Schema that

names the fields in the Tuple
n Value must be serializable
n Every Stream has an ID

n Topologies
n A Directed Acyclic Graph (DAG)

where each node is either a
Data source (Spout) or a
Processing node (Bolt)

n An Edge indicates which Bolt
subscribes to which Stream

Storm 27

Key Concepts in Storm (cont’d)
n Spout

n Source of data stream
(tuples), e.g.

n Read from the Twitter streaming
API (tuples = tweets)

n Read from a http server log
(tuples = http requests)

n Read from a Kafka queue
(tuples = events)

n Bolt
n Processes 1+ input stream(s)

and produces 1+ new
stream(s)

n e.g. Calculate, Functions,
Filters, Aggregation, Joins, talk
to database

n Complex operations may
require more than 1 Bolt

n A sample Storm Topology
n Compiled to be executed on

many machines similar to a
MapReduce job in Hadoop

Storm 28

Storm Tasks
n Each Spout or Bolt is executed as one or more Tasks

(instances) across the cluster

Storm 29

Key Concepts in Storm (cont’d)

n Worker (JVM) Process
n Executes subset of a Topology ;
n May run 1 or more threads (Executors) for one or more components
n One Thread per Executor

n Task
n The actual data processing instance executing by the thread
n It is possible for multiple tasks to share one thread (Why ? to facilitate

dynamic scaling)

Storm 30

An Example on deploying a Topology across a Cluster

Storm 31

A trivial “Hello, Storm” topology

“emit random
number < 100”

“multiply
by 2”

(148)(74)

Spout Bolt

Storm 32

Spout

Bolt

Code

Storm 33

Topology config – for running on your local laptop

Code

Storm 34

Topology config – for running on a production Storm cluster

Code

Storm 35

Creating a spout
n Very often, it suffices to use an existing spout (Kafka spout, Redis

spout, etc).
n But you usually needs to implement your own bolts to realize your

specific computation.

Storm 36

Creating a Bolt
n Storm is polyglot – but we focus on Java.
n Two main options for JVM users:

n Implement the IRichBolt or IBasicBolt interfaces
n Extend the BaseRichBolt or BaseBasicBolt abstract classes

n BaseBasicBolt
n Auto-acks the incoming tuple at the end of its execute() method.
n With the right type of Spout (reliable one), “at-least-once” processing

guarantee for each tuple is already supported automatically (and
implicitly).

n These bolts are typically simple functions or filters.
n BaseRichBolt

n Allow one to specify complex tuple-anchoring/ack mechanism explicitly.
n Need to use this type of bolt if one wants “at-most-once”, i.e. no

guarantee in tuple-processing ;
n You must – and are able to – manually ack() an incoming tuple.
n Can be used to delay acking a tuple, e.g. for algorithms that need to

work across multiple incoming tuples.

https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/IRichBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/IBasicBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/base/BaseRichBolt.java
https://github.com/apache/incubator-storm/blob/master/storm-core/src/jvm/backtype/storm/topology/base/BaseBasicBolt.java

Storm 45

Creating a topology
n When creating a topology you’re essentially defining the

DAG – that is, which spouts and bolts to use, and how
they interconnect.
n TopologyBuilder#setSpout() and TopologyBuilder#setBolt()
n Groupings between spouts and bolts, e.g. shuffleGrouping()

Storm 46

Creating a topology
n You must specify the initial parallelism of the topology.

n Crucial for Performance &Scaling but no rule of thumb.
n You must understand concepts such as workers/executors/tasks.

n Only some aspects of parallelism can be changed later,
i.e. at run-time.
n You can change the #executors (threads).
n You cannot change #tasks, which remains static during the topology’s

lifetime.

Storm 47

Creating/ Submitting a topology
n You submit a topology either to a “local” cluster or to a real cluster.

n LocalCluster#submitTopology
n StormSubmitter#submitTopology() and

#submitTopologyWithProgressBar()
n In your code you may want to use both approaches, e.g. to facilitate local testing.

n Notes
n A StormTopology is a static, serializable Thrift data structure. It contains

instructions that tell Storm how to deploy and run the topology in a cluster.
n The StormTopology object will be serialized, including all the components

in the topology's DAG.
n Only when the topology is deployed (and serialized in the process) and

initialized (i.e. prepare() and other life cycle methods are called on
components such as bolts) does it perform any actual message
processing.

Storm 49

Alright, my topology runs – now what?
n The topology will run forever or until you kill it.
n Check the status of your topology

n Storm UI (default: 8080/tcp)
n Storm CLI, e.g. storm [list | kill | rebalance | deactivate |

...]
n Storm REST API

n FYI:
n Storm will guarantee that no data (tuple) is lost, even if machines go

down and messages are dropped (as long as you don’t disable this
feature).

n But if you store states using your own variables in the bolts/ spouts,
the state information would be lost when the bolts/spouts die/
crashes

n One (new) way to overcome this is to use “Stateful Bolts with
Automatic Checkpointing” by extending from the BaseStatefulBolt
class available from the recently released Storm Ver1.0.

n Storm will automatically restart failed tasks, and even re-assign tasks
to different machines if e.g. a machine dies.

http://storm.incubator.apache.org/documentation/Command-line-client.html

Storm 50

Another Example:
Word Counting with Storm

Storm 51

How/ Where to route a tuple?

n e.g. For the previous Superbowl Tweet Analysis Example:

When a tuple is emitted, which task should it be routed to ?
Ans: It is User-Programmable

Storm 52

Using a NoSQL database for storing the results
(Keeping state with the counter-type columns)

Here, Cassandra serves as a persistent datastore so that the accumulated
counter statistics can survive the crashing of some of the topology’s components,
e.g. one or more of the Hashtag Counter bolt(s)

Storm 53

WordCount in Storm (part of the code)

TopologyBuilder builder = new TopologyBiulder();
builder.setSpout(“spout”, new KestrelSpout(“kestrel.twitter.com”,

22133, “sentence_queue”, new StringScheme()),5);
builder.setBolt(“split”, new SplitSentence(), 8).shuffleGrouping(“spout”);
builder.setBolt(“count”, new WordCount(), 12)

.fieldGrouping(“split”, new Fields(“word”));

//===
public static class SplitSentence extends ShellBolt implements IRichBolt {
//Code to split a sentence

}

public static class WordCount implements IBasicBolt{
//Code to count words, have to override the execute function
public void execute(Tuple tuple, BasicOutputCollector collector){
//…
}

}
//==
StormSubmitter.submitTopology(“word-count”, builder.createTopology());

Parallelism Degree
=(Number of threads for a

Spout or Bolt) ;
Default = 1 task per thread ;

Can be overridden by
setTaskNum()

Storm 54

Actual Code to Create the Topology
of the Example

Storm 55

Storm supports 3 different flavors of
Message/Tuple Processing Guarantee

1. No Guarantee at all (like S4 of Yahoo)

2. At Least Once -- i.e. it is possible for some tuple(s) to be
repeatedly processed by the topology more than once

3. Exactly Once (like Transaction)
• but this has feature has been deprecated
• Now, one should use Trident (is built one the top of

Storm) to support Transaction-oriented processing

Storm 56

At Least Once

n Tuple Tree
n A spout tuple is not fully

processed until all tuples in the
tree have been completed

n If the tuple tree is not completed
within a specified timeout, the
spout tuple is replayed

n Uses acker tasks to keep track of
tuple progress

n Reliability API for the user:

“Anchoring”
creates a new
edge in the tuple
tree

Marks a single
node in the tree as
complete

Storm 57

At Least Once

n What happens if there is a failure?
n You can double process events.
n This is not so critical if you have something like Hadoop

to back you up and correct the issue later.
n Or if you are looking at statistical trends and replay does

not happen that often.
n This requires you to have a spout that supports

replay. Not all messaging infrastructure does.

Storm 58

At Least Once
SPOUT SPLIT COUNT

[“the cow
jumped over
the moon”]

Acker

[“the”]

[“cow”]

[“jumped”
]

[“over”]

[“the”]

[“moon”]

[“the”, 2]

[“cow”, 1]

[“jumped”,
1]

[“over”, 1]

[“moon”, 1]

Storm 59

At Least Once
SPOUT SPLIT COUNT

[“the cow
jumped over
the moon”]

Acker

[“the”]

[“cow”]

[“jumped”
]

[“over”]

[“the”]

[“moon”]

[“the”, 2]

[“cow”, 1]

[“over”, 1]

[“moon”, 1]

[“the”, 4]

[“cow”, 2]

[“jumped”,
1]

[“over”, 2]

[“moon”,
2]

Storm 60

Exactly Once - Transactional Topologies
(Deprecated in Storm ; Use Trident instead)

n Transactional Topologies provide a strong
ordering of processing.

n A small batch of tuples are processed at a time.
n Each batch completely succeeds or completely

fails.
n Each batch is “committed” in order.
n Partial processing is pipelined
n Requires the spout to be able to replay a batch.

Storm 61

Additional Computation models with Storm

n Storm DRPC
n Parallelize the computation of really intense functions on the fly.
n Input is a stream of function arguments, and output is a stream of the

results for each of those function calls.

n Storm Trident
n High-level abstraction on top of Storm, which intermixes high

throughput and stateful stream processing with low latency
distributed querying.

n Joins, aggregations, grouping, functions, filters.
n Adds primitives for doing stateful, incremental processing on top

of any database or persistence store.
n Has consistent, exactly-once semantics.
n Processes a stream as small batches of messages

n (cf. Spark Streaming)

http://storm.incubator.apache.org/documentation/Distributed-RPC.html
https://storm.incubator.apache.org/documentation/Trident-tutorial.html

Storm 62

Distributed Remote Procedure Call (DRPC)

Storm 63

DRPC

n Distributed Remote Procedure Call
n Turn an RPC call into a tuple sent from a spout
n Take a result from that and send it back to the

user.

Storm 64

DRPC
n Distributed Remote Procedure Call
n Turn an RPC call into a tuple sent from a spout
n Take a result from that and send it back to the

user.

Storm 71

Trident

Storm 72

But What About State

n For most cases, state storage in Storm is left up
to you (the programmer).

n If your Bolt goes down after accumulating 3
weeks of aggregated data that you have not
stored any where -- too bad.

Storm 73

Enter Trident

n Trident is a high-level abstraction for doing Real-
Time computing on the top of Storm
n Similar to high-level batch processing tools like Pig or

Cascading
n Provides Exactly-Once semantics like

transactional topologies.
n In Trident, state is a first class citizen, but the

exact implementation of state is up to you.
n There are many pre-built connectors to various

NoSQL stores like HBase
n Provides a high level API (similar to cascading

for Hadoop)

Storm 74

Trident Example

TridentTopology topology =
new TridentTopology();

TridentState wordCounts =
topology.newStream("spout1", spout)
.each(new Fields("sentence"), new Split(),

new Fields("word"))
.groupBy(new Fields("word"))
.persistentAggregate(new

MemoryMapState.Factory(), new Count(), new
Fields("count"))

.parallelismHint(6);

Aggregates values and
stores them.

Storm 75

Trident Example

public class Split extends BaseFunction {

public void execute(TridentTuple tuple,
TridentCollector collector) {

String sentence = tuple.getString(0);
for(String word: sentence.split(" ")) {

collector.emit(new Values(word));
}

}

}
No Acking Required

Storm 76

Storm System Architecture
n Nimbus

n Master node (like the Job Tracker in Hadoop ver1.0)
n Manage Topologies ; Distribute Code ; Assign Tasks ; Monitor Failure

n Supervisor
n Runs on Slave nodes (aka Worker nodes) ; listen to assignment and then

launch & manage Worker (JVM) processes
n Coordinate with Zookeeper for Fault-Tolerance/ Synchronization, etc

n Zookeeper
n Store operational States & Statistics
n Cluster Coordination
n Service Discovery

slave node
(aka worker node)

slave node

Storm 77

A Summary on What Storm does
n Distribute Code and Configuration
n Robust Process Management
n Monitors Topologies and Assign Failed Tasks
n Provide Reliability by Tracking Tuple Tree
n Routing and Partitioning of Streams
n Serialization
n Fine-grained Performance Statistics/ Status of

Topologies

Storm 78

Comparison of Architecture:
Hadoop v1 (MapReduce) vs. Storm

Hadoop
v1

Storm Functions in Storm

JobTracker Nimbus
(only 1)

§ distributes code around cluster
§ assigns tasks to machines/supervisors
§ failure monitoring
§ is fail-fast and stateless (you can “kill -9” it)

TaskTracker Supervisor
(many)

§ listens for work assigned to its machine
§ starts and stops worker processes as necessary based on

Nimbus
§ is fail-fast and stateless (you can “kill -9” it)
§ shuts down worker processes with “kill -9”, too

MR job Topology § processes messages forever (or until you kill it)
§ a running topology consists of many worker processes spread

across many machines

Storm 79

Different ways to run Storm over a Cluster
n Twitter runs multiple instances of Storm over Mesos

n Multiple Topologies can be run on the same host (Shared Pool) or
n Dedicated Set of hosts to run a single topology (Isolated Pool)

n Storm can also be run as an application (framework) over YARN:

Mapping Storm’s architecture to
YARN’s resource management model

Storm 87

Operating Storm
n Typical operations tasks include:

n Monitoring topologies for Performance and Scalability
(P&S) : “Don’t let our pipes blow up!”

n Tackling P&S in Storm is a joint Ops-Dev effort.
n Adding or removing slave nodes, i.e. nodes that run

Supervisors
n Apps management: new topologies, swapping

topologies, …

n See Ops-related references at the end of this part

Storm 88

Storm security
n Original design was not created with security in mind.
n Security features are now being added, e.g. from

Yahoo!’s fork.
n State of security in Storm 0.9.x:

n No authentication, no authorization.
n No encryption of data in transit, i.e. between workers.
n No access restrictions on data stored in ZooKeeper.
n Arbitrary user code can be run on nodes if Nimbus’ Thrift port is

not locked down.
n This list goes on.

n Further details plus recommendations on hardening
Storm:
n https://github.com/apache/incubator-

storm/blob/master/SECURITY.md

https://github.com/apache/incubator-storm/blob/master/SECURITY.md

Storm 89

Stream Processing Applications at Twitter

Storm 90

Use Cases at Twitter
n Discovery of Emerging Topics and Stories
n Online Learning of Tweet Features for Search

result Ranking
n Real-time Analytics for Ads
n Internal Log processing

Storm 91

Tweet Scoring Pipeline

Storm 92

Storm adoption and use cases

n Twitter: personalization, search, revenue optimization, …
n 200 nodes, 30 topos, 50B msg/day, avg latency <50ms, Jun 2013

n Yahoo: user events, content feeds, and application logs
n 320 nodes (YARN), 130k msg/s, June 2013

n Spotify: recommendation, ads, monitoring, …
n v0.8.0, 22 nodes, 15+ topos, 200k msg/s, Mar 2014

n Alibaba, Cisco, Flickr, PARC, WeatherChannel, …
n Netflix is looking at Storm and Samza, too.

https://github.com/nathanmarz/storm/wiki/Powered-By

http://www.slideshare.net/KrishnaGade2/storm-at-twitter
http://strata.oreilly.com/2013/06/moving-from-batch-to-continuous-computing-at-yahoo.html
http://www.slideshare.net/sinisalyh/storm-at-spotify
http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html
https://github.com/nathanmarz/storm/wiki/Powered-By

Storm 97

More recent developments of Apache Storm

n Late 2013:
§ Storm enters Apache Incubator

n Early 2014 in Yahoo! :
§ 250-node cluster, largest topology 400 workers, 3,000 executors

n June 2014:
§ STORM-376 – Compress ZooKeeper data
§ STORM-375 – Check for changes before reading data from ZooKeeper

n Sep 2014:
§ Storm becomes an Apache Top Level Project

n Early 2015:
§ STORM-632 Better grouping for data skew
§ STORM-634 Thrift serialization for ZooKeeper data.
§ Yahoo deployed a 300-node cluster (Tested 400 nodes, 1,200 theoretical

maximum)
§ Largest topology 1,500 workers, 4,000 executors

§ June 2015:
§ Twitter announced the decommissioning of Storm ; replaced by Heron

which adopts the same abstraction and 100% API-compatible with Storm:
§ http://blog.acolyer.org/2015/06/15/twitter-heron-stream-processing-at-scale/
§ Refer to the Heron paper in ACM SIGMOD 2015 for its technical details

http://blog.acolyer.org/2015/06/15/twitter-heron-stream-processing-at-scale/

Open Issues of Storm

Storm 102

Scheduling (Especially on Large Clusters)

n Currently round robin (We should be able to do
better)
n Take into account resource utilization (Network)
n Locality with collocated services (Is there any

advantage to running storm on the same nodes as
HBase and/or Kafka?)

n What about better scheduling for Storm on Yarn?
n When is it worth it to kill a worker because a

better location is available? (automatic
rebalance)
n Slow node detection (12 ms)

Storm 103

Storm round-robin scheduling
§ R-1/R % of traffic will be off rack where R is the number of

racks
§ N-1/N % of traffic will be off node where N is the number of

nodes
§ Does not know when resources are full (i.e. network)

Solution: Resource & Network Topography Aware Scheduler (Storm
V1.0.0, released Apr 2016) ; Also allow Pluggable Scheduler provided
by user

One slow node slows the entire topology.

Load Aware Routing (STORM-162)
Intelligent network aware routing

Other Notable New Features from Storm V1.0.0 Rel. Apr 2016
Automatic Backpressure, Native Streaming Window API,

Stateful Bolts with Automatic Checkpointing, HA Nimbus
https://storm.apache.org/2016/04/12/storm100-released.html

Scalability Bottlenecks of Storm (cont’d)

Storm 104

How can one grow/shrink a topology
dynamically

n How to handle the different shuffles? Do we kill
everything and start over or is there a better
way?

n When should we grow or shrink?
n What do we do if there are no free resources and

we need to grow?
n Or even more difficult can we upgrade a topology

in place without killing processes?

Storm 105

Resource Isolation/Utilization

n Isolation is handled currently by creating a mini-
cluster (whole nodes) for a single topology (so
utilization suffers).

n Can we get better utilization without letting
isolation suffer? cgroups/Docker. What about
predictability on heavily used vs. lightly used
clusters? (12ms again)

n What about if I collocate this batch on Hadoop?

Storm 106

Higher level APIs

n Streaming SQL (Spark streaming has it already)
n Pig on Storm (Some proto-type effort but…)
n Native Window-based Processing API available

from Storm V1.0.0.

Storm 107

Other Competing Stream Processing Systems…
n Heron (Twitter)

n Same User Programming model and API, differ mostly in the
under-the-hood system realization/ implementation, e.g.

n Written in C++ instead of Closure
n Better separation and scheduling of tasks, executors in JVM(s) for

different components of the same/ different topologies to facilitate
debugging

n Backpressure-based congestion control of dataflow within a topology
n Google Cloud Dataflow (http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf)

n Open Source API, BUT NOT implementation
n Based on technologies from Google’s FlumeJava & MillWheel
n Great stream processing concepts

n Spark Streaming (BDAS of Berkeley/Databricks)
n Micro-batch processing instead of true real-time streaming

n Microsoft’s Naiad, Apache Apex (DataTorrent), Flink, Samza
(LinkedIn), Amazon’s Kinesis, etc

Storm 108

A Summary on What Storm does
n Distribute Code and Configuration
n Robust Process Management
n Monitors Topologies and Assign Failed Tasks
n Provide Reliability by Tracking Tuple Tree
n Routing and Partitioning of Streams
n Serialization
n Fine-grained Performance Statistics/ Status of

Topologies

Storm 109

Additional References

n A few Storm books are already available, e.g.
n Storm Applied by S.T. Allen et al, published by Manning, 2015

n Storm documentation
n https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_storm-

component-guide/bk_storm-component-guide.pdf
n http://storm.apache.org/releases/1.2.2/index.html

n Storm Kafka Integration
n http://storm.apache.org/releases/1.2.2/storm-kafka-client.html

n Mailing lists
n https://mail-archives.apache.org/mod_mbox/storm-user/

n Related work aka tools that are similar to Storm – try them, too!
n Spark Streaming

n See comparison Apache Storm vs. Apache Spark Streaming, by P. Taylor Goetz (Storm
committer)

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.5/bk_storm-component-guide/bk_storm-component-guide.pdf
http://storm.apache.org/releases/1.2.2/index.html
http://storm.apache.org/releases/1.2.2/storm-kafka-client.html
https://mail-archives.apache.org/mod_mbox/storm-user/
https://spark.apache.org/streaming/
http://www.slideshare.net/ptgoetz/apache-storm-vs-spark-streaming

